ESHER CHURCH SCHOOL

Christ at the Centre; Life to the Full
Our vision:
To be a safe, happy, loving community where excellent teaching inspires children to learn and explore, care for each other and believe they can make a difference.

PROGRESSION IN CALCULATION GUIDE

Glossary

Array: a regular arrangement of objects

Base 10:- cubes used to give a visual representation of 1, 10, 100 and 1000

Bridging: (through 10 or 100)-to use knowledge of number bonds to count on or back to the nearest/best 10 as an efficient strategy to get to the final number eg.. $13+8$ as $13+7=20+1=21$

Commutativity: that addition or multiplication can be done in any order eg.. 2×3 is the same as 3×2

Compensation: to use known number facts to calculate a number that is near to the one known eg.. $27+9$ as $27+10$ then adjust (compensate) by subtracting 1

Formal written method: a method of calculation with a proven algorithm

Integers: a complete number either positive or negative, not a fraction or decimal eg.. 3, -3, 103

Inverse: opposite/reverse operations eg.. 4+6=10 $10-4=6$

Numicon: shapes that give a visual representation of numbers from 1-10 and can be combined to make larger numbers

Place value counters: counters that have a numerical value ($0.001,0.01,0.1,1,10,100$ or 1000) marked on them

Whole number: a complete positive number e.g. 3, 41, 1007; not negative, fraction or decimal

For more definitions visit:
http://www.amathsdictionaryforkids.com/dictionary.html

This guide has calculation methods for all 4 operations and is designed to be used in a linear progression. The year groups attached are guidelines in line with the National Curriculum however children should use the strategy appropriate to their development as assessed by their class teacher. The children will be encouraged to draw upon strategies they have learned in previous years as this helps to consolidate their use and understanding of the methods.

Throughout their lessons, children will be given opportunities to apply these calculation methods in a range of problem solving contexts. This is paramount in helping the children become secure with each method. By secure, we mean they can understand and explain each method clearly and in particular have confident understanding of the place value involved with the methods.

Secure knowledge of number facts and in particular place value are key to children's success in mastering written methods and therefore is a key priority.

Moving on to the next calculation method (particularly from another year group) will be at the discretion of the class teacher as they have the greatest knowledge of the children's understanding. Despite formal written methods being seemingly easy to learn, they are challenging to understand and apply if a secure knowledge and understanding of place value is not in place. Children should not move onto the next stage if they are not ready, not confident and/or show a lack of understanding of the method.

Children should be encouraged to approximate their answers before calculating and use their understanding of number and place value to check their answers.

By the end of year 6, children should feel secure range of mental and written calculation methods. Selection of method will depend upon the numbers involved. Children will be taught how and encouraged to select the most appropriate method throughout each year group as they learn new methods.

	Addition	Subtraction	Multiplication	Division
F	Counting on continuing to use the objects and resources introduced in Reception and progressing to: Counting on a number line in 1 s by drawing the jumps: $3+2=5$ Counting on a hundred square in 1s and 10s (place value understanding of jumping down rows): Drawing pictures (particularly when beginning to solve problems/investigate numbers): Using balances to write calculations e.g. $3+7=10$: Using known facts: $\begin{aligned} & \text { e.g. } 3+5=8 \text { so } \\ & 13+5=18 \text { and } \\ & 23+5=8 \text { e.t.c. } \end{aligned}$	Removing, covering, crossing off and counting back continuing to use the objects and resources introduced in Reception and progressing to: Counting back on a number line in 1 s by drawing the jumps: $7-2=5$ Counting back on a hundred square in 1 s and 10s (place value understanding of jumping up rows): Drawing pictures (particularly when beginning to solve problems/investigate numbers): Overlaying Numicon to write calculations: Using known facts: e.g. $7-3=4$ so 17-3 = 14 and 27-3 = 24 e.t.c.	Counting in groups continuing to use the objects and resources introduced in Reception and progressing to using repeated addition: 3 times 3 is $3+3+3=9$ or 3 lots of 3 or 3×3 Using objects and pictures: On a bead bar/string: $5 \times 3=5+5+5$ 5 5 5 On a number line (repeated addition): Doubling using objects and pictures: double 4 is 8 double 5 is 10 $4 \times 2=8$ $5 \times 2=10$	Splitting into groups continuing to use the objects and resources introduced in Reception and progressing to using repeated subtraction: Using Numicon: 12 divided by 3 is $12-3-3-3-3=0$ or $12 \div$ 3 Using objects and pictures: On a bead bar/string: $15 \div 5=15-5-5-5$ On a number line (repeated subtraction): $15 \div 5=3$ Halving (sharing) using objects and pictures: half of 8 is 4 $8+2=4$ Half of 6 is 3 $6 \div 2=3$

	Addition	Subtraction	Multiplication	Division
	Counting on continuing to use a number line and hundred square and progressing to: Using partitioning (adding tens and ones/units separately): With Numicon: With Base 10: Using a bead string for bridging: $8+5(8+2+3)=10$ Using a landmarked number line for counting on in 10s, counting on units in one jump and bridging (taught in graduated steps): $17+15$ Using an empty number line for counting on in 10s and bridging: $37+15=52$ Using an empty number line for counting on in multiples of 10 (and bridging): $34+23=57$	Counting back continuing to use a number line and hundred square and progressing to: Using a bead string for bridging: Using a landmarked number line for subtracting 10s: $33-20=$ Counting up using bridging and adding 10s: Using a landmarked number line: 43-25- Using an empty number line : 55-27 Counting up using bridging and multiples of 10: 63-26	Continuing to use repeated addition on a number line and counting in groups using methods taught in Year One and progressing to using an array. Children can also recognise the commutative relationship between multiplication facts: Using a number line: Using objects: $4 \times 3=12$ and $3 \times 4=12$ Drawing pictures: $3 \times 2=6$ and $2 \times 3=6$ Using real life examples:	Continuing to use repeated subtraction on a number line and splitting into groups using methods taught in Year One and progressing to using an array. Using a number line: Using objects: $12 \div 4=3$ and $12 \div 3=4$ Drawing pictures: $6 \div 2=3$ and $6 \div 3=2$ Using real life examples: $12 \div 3=4$ and $12 \times 4=3$ Drawing an array: $12 \div 4=3$ $12 \div 3=4$

